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Figure VII.1

Components in a typical automobile that are related to the topics described in Part VII.

Coating

Valves, seals,
cylinders,
piston rings

Paint
Bearings

Oil

Plating

Grease _
Corrosion

protection

Galvanized steel

Brake drums,
rotors

Wheel bearings

@Pearson Copyright © 2020, 2016 Pearson Education, Inc. All Rights Reserved



Figure VII.2

An outline of topics covered in Part VII.
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Figure 33.1

Schematic illustration of a cross-section of the surface structure of a metal. The thickness
of the individual layers depends on both processing conditions and the processing

environment.
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Source: After E. Rabinowicz and B. Bhushan.
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Figure 33.2 (1 of 2)

(a) Standard terminology and symbols to describe surface finish. The quantities are given
in microinches.
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Figure 33.2 (2 of 2)

(b) Common surface lay symbols.
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Figure 33.3

Coordinates used for surface-roughness measurement defined by Egs. (33.1) and (33.2).
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Figure 33.4 (1 of 6)

(a) Measuring surface roughness with a stylus. The rider supports the stylus and guards
against damage. (b) Path of the stylus in surface-roughness measurements (broken line),
compared with the actual roughness profile. Note that the profile of the stylus path is
smoother than that of the actual surface. (c) through (f) Typical surface profiles produced by
various machining and surface-finishing processes. Note the difference between the

vertical and horizontal scales.
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Figure 33.4 (2 of 6)
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Figure 33.4 (3 of 6)
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Figure 33.4 (4 of 6)
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Figure 33.4 (5 of 6)
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Figure 33.4 (6 of 6)
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Figure 33.5

Surface roughness and tolerances obtained in various machining processes; note the wide
range within each process (see also Fig. 23.14).
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Figure 33.6

Schematic illustration of the interface of two bodies in contact showing real areas of contact
at the asperities. In engineering surfaces, the ratio of the apparent-to-real areas of contact

can be as high as 4 to 5 orders of magnitude.
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Figure 33.7 (1 of 2)

Ring-compression test between flat dies. (a) Effect of lubrication on type of ring-specimen
barreling.
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Figure 33.7 (2 of 2)

Ring-compression test between flat dies. (b) Test results: (1) original specimen and (2) to
(4) increasing friction.

(b)

Source: After A.T.Male and M.G. Cockcroft.
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Figure 33.8 (1 of 2)

Chart to determine friction coefficient from a ring-compression test. Reduction in height and
change in internal diameter of the ring are measured; then p is read directly from this chart.
For example, if the ring specimen is reduced in height by 40% and its internal diameter
decreases by 10%, the coefficient of friction is 0.10.
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Figure 33.9 (1 of 2)

Changes in original (a) wire-brushed.
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Figure 33.9 (2 of 2)

Changes in original (b) ground-surface profiles after wear. Note the difference in the vertical
and horizontal scales.
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Source: After E. Wild and K.J. Mack.
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Figure 33.10 (1 of 3)

Schematic illustration of (a) two contacting asperities.
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Figure 33.10 (2 of 3)

Schematic illustration of (b) adhesion between two asperities.
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Figure 33.10 (3 of 3)

Schematic illustration of (c) the formation of a wear particle.
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Figure 33.11

Schematic illustration of abrasive wear in sliding. Longitudinal scratches on a surface
usually indicate abrasive wear.
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Figure 33.12

Types of wear observed in the cavity of a single pair of dies used for hot forging.
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Source: After T.A. Dean.
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Figure 33.13 (1 of 4)

Regimes of lubrication generally occurring in metalworking operations.
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Figure 33.13 (2 of 4)
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(b) Thin film
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Figure 33.13 (3 of 4)

Boundary film

(c) Mixed

@Pearson Copyright © 2020, 2016 Pearson Education, Inc. All Rights Reserved



Figure 33.13 (4 of 4)

Boundary film

(d) Boundary

Source:; After W.R.D.Wilson.
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Figure 34.1 (1 of 3)

Burnishing tools and roller burnishing of (a) the fillet of a stepped shaft to induce
compressive surface residual stresses for improved fatigue life;
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Figure 34.1 (2 of 3)

Burnishing tools and roller burnishing of (b) a conical surface.
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Figure 34.1 (3 of 3)

Burnishing tools and roller burnishing of (c) a flat surface.
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Roller Burnishing

https://youtu.be/EOgO1jtNCm4
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Figure 34.2 (1 of 3)

Schematic illustrations of thermal-spray operations: (a) thermal wire spray.
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Figure 34.2 (2 of 3)

Schematic illustrations of thermal-spray operations: (b) thermal metalpowder spray.
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Figure 34.2 (3 of 3)

Schematic illustrations of thermal-spray operations: (c) plasma spray.
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Thermal Spray

https://youtu.be/lllErxrjIRg
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Figure 34.3

Schematic illustration of the physical-vapor-deposition process. Note that there are three
arc evaporators and the parts to be coated are placed on a tray inside the chamber.
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PVD Process

https://youtu.be/csCrDaY-JJI
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Figure 34.4

Schematic illustration of the sputtering process.

Working Cathode
gas feed
Target — L Ground
AidA: A Ak shield =
lon flux __5>-0!0!0.0.0.0"
TV Y Y Y YN
Sputtered Power
flux supply
Plasma ~Anode [T
| ~\Vacuum
To vacuum
pumps =

@Pearson Copyright © 2020, 2016 Pearson Education, Inc. All Rights Reserved



Sputtering

https://youtu.be/L6ZIkmIVm6c
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Figure 34.5

Schematic illustration of an ion-plating apparatus.

D

Insulator

Variable leak

Movable shutter 1_ B

Ground shield High-voltage
Substrate fupply
Cathode dark space e e $ Current
Evaporator filament S LI IELY

Glass chamber —/n =

High-current feedthroughs J: Vacuum e

|
Filament supply

@Pearson Copyright © 2020, 2016 Pearson Education, Inc. All Rights Reserved



lon Plating

https://youtu.be/COGINDPG8NSs
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Figure 34.6

Schematic illustration of the chemical-vapor-deposition process; note that parts and tools to
be coated are placed on trays inside the chamber.
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CVD process

https://youtu.be/j80jsWFm8Lc
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Figure 34.7

An outline of laser surface-engineering processes.
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Figure 34.8 (1 of 2)

(a) Schematic illustration of the electroplating process.
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Figure 34.8 (2 of 2)

(b) Examples of electroplated parts.

Source: Courtesy of Shutterstock/Jarous.
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Figure 34.9 (1 of 2)

(a) Schematic illustration of nonuniform coatings (exaggerated) in electroplated parts.
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Figure 34.9 (2 of 2)

(b) Design guidelines for electroplating. Note that sharp external and internal corners
should be avoided for uniform plating thickness.
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Figure 34.10 (1 of 2)

(a) Typical sequence in electroforming. (1) A mandrel is selected with the correct nominal
size. (2) The desired geometry (in this case, that of a bellows) is machined into the
mandrel. (3) The desired metal is electroplated onto the mandrel. (4) The plated material is
trimmed if necessary. (5) The mandrel is dissolved through chemical machining.
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Figure 34.10 (2 of 2)

(b) A collection of electroformed parts.

(b)

Source: Courtesy of Servometer®, Cedar Grove, NJ.
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Figure 34.11

Flow line for the continuous hot-dipped galvanizing of sheet steel. The welder (upper left) is
used to weld the ends of coils to maintain continuous material flow.
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Source: Courtesy of the American Iron and Steel Institute.
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Table 34.1

Ceramic Coatings Used for High-temperature Applications.

Property

Type of ceramic

Applications

Wear resistance

Thermal insulation

Electrical insulation

Chromium oxide, aluminum oxide, alu-
minum titania

Zirconium oxide (yttria stabilized), zir-
conium oxide (calcia stabilized), magne-
sium zirconate

Magnesium aluminate, aluminum oxide

Pumps, turbine shafts, seals, and compressor rods
for the petroleum industry; plastics extruder bar-
rels; extrusion dies

Fan blades, compressor blades, and seals for gas
turbines; valves, pistons, and combustion heads for
automotive engines

Induction coils, brazing fixtures, general electrical
applications
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Figure 34.12 (1 of 3)

Methods of paint application: (a) dip coating.
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Figure 34.12 (2 of 3)

Methods of paint application: (b) flow coating.
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Figure 34.12 (3 of 3)

Methods of paint application: (c) electrostatic spraying (used particularly for automotive

bodies).
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